(3x)^2+(5x)^2=64

Simple and best practice solution for (3x)^2+(5x)^2=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x)^2+(5x)^2=64 equation:



(3x)^2+(5x)^2=64
We move all terms to the left:
(3x)^2+(5x)^2-(64)=0
We add all the numbers together, and all the variables
8x^2-64=0
a = 8; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·8·(-64)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*8}=\frac{0-32\sqrt{2}}{16} =-\frac{32\sqrt{2}}{16} =-2\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*8}=\frac{0+32\sqrt{2}}{16} =\frac{32\sqrt{2}}{16} =2\sqrt{2} $

See similar equations:

| 3(n-50)=4-2n | | 3(10n-50)=4-2n | | 3x+47=5x+45 | | -2(x-9)-(x+13)=—16 | | 4a(7−2)2=−200 | | 4y(7−2)^2=−200 | | X+19=x+27 | | (9x-40)+(7x-37)+(3x+23)=180 | | 15n+5(40-n)=0 | | x^2-450x+10000=0 | | X+17=x+13 | | 0.76a=9 | | 48^(x)=480000 | | 1/2(6x-10)-x=1/3(13x-41) | | 100=1-2/11n | | (48)^x=480000 | | 2x+15+37=11x-10 | | 1/2(6x-10)-x=1/3(13x-40) | | 5.6g=12.88 | | 48^x=480000 | | 3x-6+7=19 | | 1/3(x+729)=1632 | | 3(2k)^2+8=0 | | 1/3(x+1632)=729 | | -p^2+8p-5=-9 | | -3.3t-5.1=-1.5t+5.7 | | .4n-1=5/7 | | 2x^2+30x+72=0 | | m2+16m=-59 | | 73n+19=22 | | 6(x-5)=7x-4 | | 170x(-4)=680 |

Equations solver categories